Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/machinelearning_interview/-1768-1769-1770-1768-): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Machine learning Interview | Telegram Webview: machinelearning_interview/1768 -
Telegram Group & Telegram Channel
Forwarded from Machinelearning
🌟 Математические датасет OpenMathReasoning и модели OpenMath-Nemotron - победители олимпиады AIMO-2.

NVIDIA представила новый подход к обучению моделей для сложных математических задач, заняв первое место в конкурсе Kaggle AIMO-2.

Секрет — в огромном датасете OpenMathReasoning, который состоит из 540 тыс. уникальных задач с Art of Problem Solving, 3,2 млн. многошаговых решений (CoT) и 1,7 млн. примеров с интеграцией кода (TIR).

Для сравнения: это в разы больше, чем в популярных аналогах MATH и GSM8K. Все это дополнено 566 тыс. примеров для обучения генеративному выбору решений (GenSelect) — методу, который лучше, чем классическое голосование большинством.

OpenMathReasoning создавался тщательно и ответственно. Сначала задачи фильтровались через Qwen2.5-32B, чтобы убрать простые или дублирующие бенчмарки. Затем DeepSeek-R1 и QwQ-32B генерировали решения, а итеративная тренировка с жесткой фильтрацией улучшала качество. Например, код в TIR-решениях должен был не просто проверять шаги, а давать принципиально новые вычисления — вроде перебора вариантов или численного решения уравнений.

Модели OpenMath-Nemotron (1,5B–32B параметров), обученные на этом наборе данных показали SOTA-результаты. 14B-версия в режиме TIR решает 76,3% задач AIME24 против 65,8% у базового DeepSeek-R1. А с GenSelect, который анализирует 16 кандидатов за раз, точность взлетает до 90%. Даже 1,5B-модель с GenSelect обгоняет 32B-гиганты в отдельных тестах.


📌Лицензирование: CC-BY-4.0 License.


🟡Набор моделей
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Math #Dataset #NVIDIA
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/machinelearning_interview/1768
Create:
Last Update:

🌟 Математические датасет OpenMathReasoning и модели OpenMath-Nemotron - победители олимпиады AIMO-2.

NVIDIA представила новый подход к обучению моделей для сложных математических задач, заняв первое место в конкурсе Kaggle AIMO-2.

Секрет — в огромном датасете OpenMathReasoning, который состоит из 540 тыс. уникальных задач с Art of Problem Solving, 3,2 млн. многошаговых решений (CoT) и 1,7 млн. примеров с интеграцией кода (TIR).

Для сравнения: это в разы больше, чем в популярных аналогах MATH и GSM8K. Все это дополнено 566 тыс. примеров для обучения генеративному выбору решений (GenSelect) — методу, который лучше, чем классическое голосование большинством.

OpenMathReasoning создавался тщательно и ответственно. Сначала задачи фильтровались через Qwen2.5-32B, чтобы убрать простые или дублирующие бенчмарки. Затем DeepSeek-R1 и QwQ-32B генерировали решения, а итеративная тренировка с жесткой фильтрацией улучшала качество. Например, код в TIR-решениях должен был не просто проверять шаги, а давать принципиально новые вычисления — вроде перебора вариантов или численного решения уравнений.

Модели OpenMath-Nemotron (1,5B–32B параметров), обученные на этом наборе данных показали SOTA-результаты. 14B-версия в режиме TIR решает 76,3% задач AIME24 против 65,8% у базового DeepSeek-R1. А с GenSelect, который анализирует 16 кандидатов за раз, точность взлетает до 90%. Даже 1,5B-модель с GenSelect обгоняет 32B-гиганты в отдельных тестах.


📌Лицензирование: CC-BY-4.0 License.


🟡Набор моделей
🟡Arxiv
🟡Датасет
🖥GitHub


@ai_machinelearning_big_data

#AI #ML #Math #Dataset #NVIDIA

BY Machine learning Interview






Share with your friend now:
tg-me.com/machinelearning_interview/1768

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

Telegram auto-delete message, expiring invites, and more

elegram is updating its messaging app with options for auto-deleting messages, expiring invite links, and new unlimited groups, the company shared in a blog post. Much like Signal, Telegram received a burst of new users in the confusion over WhatsApp’s privacy policy and now the company is adopting features that were already part of its competitors’ apps, features which offer more security and privacy. Auto-deleting messages were already possible in Telegram’s encrypted Secret Chats, but this new update for iOS and Android adds the option to make messages disappear in any kind of chat. Auto-delete can be enabled inside of chats, and set to delete either 24 hours or seven days after messages are sent. Auto-delete won’t remove every message though; if a message was sent before the feature was turned on, it’ll stick around. Telegram’s competitors have had similar features: WhatsApp introduced a feature in 2020 and Signal has had disappearing messages since at least 2016.

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Machine learning Interview from ca


Telegram Machine learning Interview
FROM USA